ا اسم المدرسة:ا	
رقم المركز:ا المادة: الكيمياء	الاسم: :
حمن الرحيم	لاستعمال الكنترول بسم الله الر
ة السودان	جمهورية وزارة التربي
انات السودان	

الزمن: ثلاث ساعات

المادة: الكيمياء

تعليمات مهمة:

- ١- اكتب اسمك ورقم جلوسك واسم المدرسة ورقم المركز بكل وضوح في الأماكن المخصّصة لذلك .
 - ٢- سجِّل بكراسة الإجابة جميع المسودَّات وخطوات الإجابة ولا تستعمل أيّة ورقة خارجية .
 - ٣- أجب عن كل سؤال في المكان المخصص له .
 - ٤- لا يسمح باستعمال الآلات الحاسبة أو الالكترونية .

* تنبيه للممتحنين:

- أسئلة هذه المادة ٥ أسئلة مطبوعة على ١٠ صفحات (صفحة ٢ ١١) .
- المربعات والدوائر المرسومة على الهوامش مخصّصة لأعمال التصحيح فقط.

اترك هذا الجدول خالياً

راجعيه	صحّحه	الدرجة	رقم السؤال
			*
			*
			٤
			8
			المجموع

لا تكتب في هذه الساحة الطاللة

أجب عن جميع الأسئلة

السؤال الأول:

(١) أكمل العبارات التالية بكتابة الكلمات أو العبارات المناسبة في الأماكن الشاغرة:

أ- تُعرف الطاقة بأنها....

ب- العامل المؤكسد هو الذرة أو الأيون أو المجموعة الأيونية التي (تفقد / تكتسب)..
 إلكترون أو أكثر في تفاعل كيميائي.

(٢) ضع دائرة حول رقم الإجابة الصحيحة لكل من الآتي :

أ- احسب مولارية محلول السكر إذا كانت 4.0 دسم من المحلول تحتوي على 8.0 مول من السكر:

١- 0.5 مولار.

٣- 2.0 مولار.

ب- تُعرف مولارية المحلول بأنها:

١- الكتلة الذرية لعنصر .

٣- عدد مولات المذاب في دسم من المحلول . ٤- كتلة المذيب في دسم من المحلول .

ج- الاسم المنهجي (نظام أيوباك) للمركب العضوي ذي الصيغة التالية :

$$CH_3 - CH - CHCl - CH_2 - CHBr - CH_3$$

 $CH_2 - CH_3$

هو: 1/ 2 - برومو - 4 - كلورو - 5 - إيثيل هكسان.

2/ 3 - ميثيل - 4 - كلورو - 6 - برومو هبتان .

3/ 2 - برومو - 4 - كلورو - 5 - ميثيل هبتان .

. 4/ 4 - كلورو - 2 - برومو - 5 - ميثيل هبتان .

HBr و $CH_2 = CH - CH_3$: المركب العضوي الذي ينتج من تفاعل المركبين ذوي الصيغ

 $CH_3 - CHBr - CH_3$ /2

 $CH_2Br - CH_2 - CH_3$ /1

 $CH_3 - CH_2 - CH_3$ /4

 $CH_2 = CH - CH_2Br /3$

ه- إذا كان التغير في المحتوي الحراري للتفاعل التالي:

 $2XY_{2(g)} + Y_{2(g)} \longrightarrow 2XY_{3(g)}$

يساوي -200.0 كيلوجول . وحرارة تكوين المركب $XY_{3(g)}$ تساوي +400 كيلو جول/مول فإن حرارة

تكوين المركب (g) XY_2 تساوي :

2/ (-300.0) كيلو جول/مول.

1/ (-400.0) كيلو جول/مول.

. (- 600.0) كيلو جول/مول

. (200.0 –) كيلو جول/مول

و- طاقة التنشيط هي :

- ١- الحد الأدنى للطاقة اللازمة لكسر بعض روابط المواد المتفاعلة .
 - ٧- الحد الأدنى للطاقة اللازمة لبناء بعض روابط المواد الناتجة .
 - ٣- الحد الأدنى من الطاقة المطلوبة لإحداث التفاعل .
 - ٤- الحد الأدنى من حرارة التفاعل.

م- تفاعل كيميائي قيمة ثابت اتزانه K = (65) عند درجة حرارة (65) مئوية ، لكن عند درجة حرارة أخرى وجد أن قيمة رائز التفاعل (38.1) لذلك :

- ١- التفاعل في حالة اتزان عند درجة الحرارة المعينة .
- ٧- سوف يتجه التفاعل نحو المتفاعلات ليصل لحالة الاتزان .
 - ٣- سوف يتجه التفاعل نحو النواتج ليصل لحالة الاتزان.
 - ٤- سوف يتوقف التفاعل.

ن- تتغير قيمة ثابت اتزان التفاعل الكيميائي عند تغير:

- ٢- تركيز احد المتفاعلات.
- ١- الضغط الكلى للنظام.
- ٤- كمية العامل المساعد (الحفاز) .

٣- درجة الحرارة .

ك- إذا كانت حرارة احتراق الميثان $CH_4 = CH_4$ كيلو جول/مول ، فإن قيمته السعرية تساوي :

- ١- 803.0 كيلو جول/جرام . ٢- 60.0 كيلو جول/جرام .
- ٣- 401.5 كيلو جول/جرام . ع- 50.2 كيلو جول/جرام .
 - (الكتل الذرية النسبية: 12 = C = 12)

ل- في حالة الحفز المتجانس تكون:

- ١- المواد المتفاعلة والناتجة في نفس الحالة الفيزيائية .
- ٢- المواد المتفاعلة والعامل الحفاز في نفس الحالة الفيزيائية .
- ٣- المواد الناتجة والعامل الحفاز في نفس الحالة الفيزيائية.
- ٤- المواد المتفاعلة والعامل الحفاز في نفس الحالة الكيميائية .

م- يستخلص فلز النحاس (الكتلة النسبية = 63.0) من خاماته بالتحليل الكهربائي للخام . كم جراماً من النحاس يمكن استخلاصها من أكسيد النحاس (II) بإمرار تيار كهربائي ثابت مقداره 10. أمبير لمدة ساعة واحدة ؟ 1/ 17.5جم 23.5 جم 8/ 5.9جم الماعة واحدة ؟ 1/ 5.95جم 4/ 5.9جم

(٣) أ- هنالك نوعان من الاختبارات المستخدمة في التحليل الكيفي ، اذكرهما :

ب- أكمل الجدول التالي:

مثال للمحلول	نوع المحلول	المذيب	المذاب
	غازي		غاز
CO ₂ في الماء		سائل	
الخل في الماء	سائل		
الزنك في النحاس			صلب

السؤال الثاني :
(١) أ- عين الأزواج المترافقة (حمض - قاعدة) في التفاعل الكيميائي بين الأمونيا وحمض الهيدروفلوريك في
وسط مائي .
$NH_{3(aq)} + HF_{(aq)} \longrightarrow NH_{4}^{+}_{(aq)} + F_{(aq)}^{-}$
الزوج الأول :
الزوج الثاني : و و و
ب- التعادل وفقاً لنظرية أرهينيوس هو :
(٢) أ- اختر الإجابة الصحيحة :
الظروف القياسية لسلسلة جهود الأقطاب (السلسلة الكهروكيميائية) هي :
١- ضغط واحد جو ، صفر درجة مئوية ، حجم واحد دسم٣.
٢- ضغط واحد جو ، ٢٥ درجة مئوية ، تركيز واحد مولار .
٣- ضغط واحد جو ، ٢٥ درجة مئوية ، حجم واحد دسم٣.
٤- ضغط واحد جو ، ١٠٠ درجة مئوية ، تركيز واحد مولار .
ب- المادة الإلكتروليتية هي :
ج- اختر الإجابة الصحيحة للآتي: أي من التالي يرتب النشاط (القوة كعامل مختزل)
للفلزات Cu , Cd , Zn ، استعن بالمعادلات الكيميائية التالية :
$Zn + CuBr_2 \longrightarrow Cu + ZnBr_2$
$Cd + ZnBr_2$ لا يحدث تفاعل \sim
$Cu + CdBr_2 \longrightarrow $ لا يحدث تفاعل
$Z_n > C_{11} > C_{d-1}$

Zn > Cd > Cu - 2

Cd > Cu > Zn -3

Cu > Cd > Zn -4

(تنبيه: B > A تعني B أقوى من A)

د- كم تكون القوة الدافعة الكهربية القياسية لخلية كهروكيميائية صممت من قطب كادميوم Cd في محلول . Cr (NO_3) تركيزه 1.0 مولار وقطب كروم Cr في محلول Cr (NO_3) تركيزه 1.0 مولار وقطب كروم Cr في محلول Cr (NO_3)

. ولت الأقطاب القياسية $Cd(NO_3)_2: 0.40 - Cd/Cd(NO_3)_2$ فولت

. فولت $0.74 - = Cr / Cr (NO_3)_3$

	August 18	4.4	44	4.4	
t		11 4	ATI	A 11	
J		. 112	11	الما	L
		JI	الث	الث	

السؤال التالت: (١) أ- في التفاعل الكيميائي التالي :

$NH_3 + BF_3 \longrightarrow H_3N - BF_3$
الحمض هو: بناء على نظرية لويس.
ب- اذكر سببين لماذا لا يمكنك تحضير محلول معلوم التركيز مباشرة بوزن كمية من كربونات الصوديوم ثم
إذابتها في الماء .
ج- تمت معايرة 25.0 سم من محلول هيدروكسيد الصوديوم مع محلول حمض النتريك الذي يحتوي على
6.30 جم من الحمض في 1000.0 سم من المحلول. تم استخدام 30.0 سم من محلول الحمض.
١- سم كاشفاً مناسباً للتعرف على نقطة النهاية في هذه المعايرة .
٢- اكتب معادلة التفاعل الذي يحدث .
٣- احسب تركيز محلول حمض النتريك بالمول / دسم٣ .
٤- احسب تركيز محلول هيدروكسيد الصوديوم بالمول / دسم٣ .
$C = A$ و B و C كلها صيغتها الجزيئية $C_4H_{10}O$. جزيئات الكحول C تحتوي على
سلسلة متفرعة ويمكن أكسدته إلى ألدهيد . جزيئات الكحول B سلسلة مستقيمة ويمكن أكسدته إلى
. كيتون. والكحول C لا يمكن أكسدته إلى ألدهيد أو كيتون . اكتب الصيغة البنائية لكل كحول
الصيغة البنائية للكحول A : الصيغة البنائية للكحول
الصيغة البنائية للكحول B : B الصيغة البنائية للكحول
الصيغة البنائية للكحول C : C : الصيغة البنائية للكحول
٧- الحموض الدهنية حموض كاربوكسيلية لها سلاسل كربونية طويلة مرتبطة بها زمرة كاربوكسيل.
كيف يختلف الحمض الكاربوكسيلي المشبع عن الحمض الكربوكسيلي غير المشبع ؟
 ما وجه الشبه بين الحموض الكاربوكسيلية المشبعة وغير المشبعة ؟

	(٢) أ- يُعرُّف الملح ذو المحلول الحمضي بأنه الذي ينتج من تفاعل :
	قاعدة
	ب- حرارة تكوين المركب = اللحتوي الحراري له ، علل :
	ج- تزداد سرعة (معدل) التفاعل الكيميائي عند استخدام عامل حفاز ، علل :
	د- سرعة (معدل) تفاعل المواد أيونية الرابطة أكبر من سرعة (معدل) تفاعل المواد إسهامية الرابطة ، علل :
	ر (٣) لقياس حرارة تفكك حمض الإثانويك (الخليك) الضعيف ، استعن بالمعلومات التالية :
	(1) $CH_3COOH \longleftrightarrow CH_3COO^- + H^+$ $\Delta H = X kJ$
	$(2) H^{+} + OH^{-} \longleftrightarrow H_{2}O$ $\Delta H = -57.7 kJ$
	(3) $CH_3COOH + OH \longrightarrow CH_3COO + H_2O$ $\Delta H = -55.4 \text{ kJ}$
	احسب قيمة (X) : (X)
	ركا أ- يتحلل $N_2O_{5(g)}$ بموجب المعادلة الكيميائية التالية :
	$2N_2O_{5(g)} \longrightarrow 4NO_{2(g)} + O_{2(g)}$
	رو. استخدم البيانات التالية لحساب معدل (سرعة) تكون غاز الأكسجين في الفترة من 600 إلى 1200 ثانية.
	(N ₂ O ₅)
	الموسى
	1200 ثانية 0.1 مول / دسم٣

	ب- يمكن تحضير رابع كلوريد الكربون CCl ₄ بكلورة (إضافة الكلور) للكلوروفورم CHCl ₃ وفق
	الميكانيكية التالية :
	a- $Cl_2 \longrightarrow 2C\bar{l}$
	b- $C\bar{l} + CHC\bar{l}_3 \longrightarrow HCl + CC\bar{l}_3$
	$c-Cl^{-}+CCl_{3} \longrightarrow CCl_{4}$
	اكتب المعادلة الكيميائية الشاملة لهذا التفاعل:
)
W	× ۱۱ / ۷ الصفحة الله الصفحة الله الصفحة الله الصفحة الله السفحة الله الله الله الله الله الله الله الل

- 1			1	
	الرا	1 1	1 6	T
				1
\sim				

الصوديوم الصلب في أنبوبة اختبار يحدث	الصلب وهيدروكسيد	. من إيثانوات الصوديوم	ا (١) أ- إذا سخن خليط
			التفاعل التالي:

 $CH_3 - COONa + NaOH \longrightarrow CH_4 + Na_2 CO_3$

افترض أن مركبات الصوديوم من الحموض الكربوكسيلية الأخرى تسلك نفس الطريقة ، كلٌ يكون ملح كربونات الصوديوم وناتج عصصوي آخر . بمعادلة كربوكسيسائيسة وضح تفاعل بروبانوات الصوديوم $CH_3 - CH_2 - COONa$ الصلب مع هيدروكسيد الصوديوم الصلب ، وسمِّ الناتج العضوي .

المعادلة الكيميائية:

220	_	لعظ	1		11	
	مه ک	نعم	17	_	JI,	لللية

ب- ماذا تشاهد عند إمرار غاز البروبين في البروم ؟

ج- إذا أستبدلت ذرتا هيدروجين في جزيء الإيثان بذرتي كلور ، من الممكن الحصول على مركبين مختلفين كنواتج . اكتب الصيغة البنائية لكل من المركبين .

- الصيغة البنائية للمركب الأول:

- الصيغة البنائية للمركب الثانى:

د- الصيغ الجزيئية للمركبين الهيدروكربونيين M و N كالتالى :

 $C_4 H_8 = N$, $C_4 H_{10} = M$

 C_4H_9Cl مع الكلور وكون المركب ذا الصيغة الجزيئية M مع الكلور وكون

- اكتب معادلة كيميائية موزونة توضح هذا التفاعل:

- ما نوع هذا التفاعل:

، $CH_3 - CH = CH - CH_3 : M$ هي $N_3 : M_3 = N_3 + N_3 = N_3 + N_3 = N_3 =$

: تم وضع 5 سم من المحاليل الآتية ${f C}$. ${f C}$, ${f B}$, ${f A}$ لديك ثلاث أنابيب اختبار ${f C}$, ${f B}$. ${f C}$, ${f B}$, ${f A}$
مريتات الصوديوم Na ₂ SO ₄ في الأنبوبة A ، كربونات الصوديوم الهيدروجينية NaHCO ₃ في
الأنبوبة $m{B}$ ، نترات الصوديوم $NaNO_3$ في الأنبوبة $m{C}$.
اضيفت 5 نقاط من محلول كلوريد الباريوم $BaCl_2$ لكل أنبوبة .
اً - في أى أنبوبة تتوقع تكوّن راسب ؟ (ضع علامة (✓) أمام الأنبوبة التي يتكون فيها راسب .
انبوية A () أنبوية B () أنبوية C) ما أنبوية الله الله الله الله الله الله الله الل
- ما لون الراسب المتكون ؟ - ما لون الراسب المتكون ؟
اكتب معادلة كيميائية توضع التفاعل الذي تتوقع حدوثه :
إذا استبدل محلول كلوريد الباريوم بمحلول حمض الهيدروكلوريك المخفف وتم تجهيز الأنابيب مرة ثانية ،
وأضيفت ٥ نقاط من محلول الحمض لكل أنبوبة .
في أي أنبوبة تتوقع مشاهدة حدوث فوران وتصاعد غاز ؟ ضع علامة (✔) أمام الأنبوبة التي يحدث فيها
تصاعد الغاز) .
أنبوبة A () انبوبة B () أنبوبة A ()
ر سي الله الذي تتوقع حدوثه : - وضح بمعادلة كيميائية التفاعل الذي تتوقع حدوثه :
ر ب- ١- ماذا يقصد بالتجربة الكشفية (الأولية) ؟
٢- وضح - بالمعادلات الكيميائية - كيف تميز نوعياً بين كل من :
. $Pb(CH_3COO)_2$ وشق الكبريتيت SO_3^{2-} باستخدام محلوًل خلات الرصاص SO_3^{2-}

٣- بعد رحلة مدرسية أحضر بعض الطلاب عينة من الصخور لفحصها في مختبر المدرسة . بلة قال أنها
كربونات كالسيوم ، محمد قال أنها كربونات النحاس (II) ، آدم قال أنها كربونات الصوديوم .
كيف يمكن أن يفحص الطلاب الصخرة ويحددوا :
• أنها كربونات ؟
اكتب معادلة كيميائية للتفاعل المتوقع:
• أنها مركب من مركبات الكالسيوم :
• أنها مركب من مركبات النحاس (II) :
اكتب معادلة كيميائية للتفاعل المتوقع :
 أنها مركب من مركبات الصوديوم :

→ اقلب الصفحة العا

السؤال الخامس:
ا (١) أ- أوجد قيم كل من (a) و (z) حيثما طُلب في المعادلات النووية التالية :
$1 - {}^{40}_{19}K \longrightarrow {}^{40}_{\mathbf{Z}}Ca + {}^{0}_{1}e \qquad = \mathbf{z}$
$2- {}^{239}_{94}Pu + {}^{4}_{2}He \longrightarrow {}^{a}_{z}X + {}^{1}_{0}n = z = z$
$3 - \frac{14}{7}N + \frac{1}{1}P \longrightarrow {}^{a}_{6}X + {}^{4}_{2}He \qquad = a$
$E=mc^2:$ ب- قانون مكافيء الطاقة والكتلة يمثل بالآتي
ماذا تمثل الحروف : E m m m
جـ- عمر النصف $(rac{t_{\perp}}{2})$ لنظير مشع 12.5 يوماً . بعد 50 يوماً تبقت منه 0.75 جم . كم كانت كتلته
الأصلية.

د- في عملية الانشطار النووي يكون مجموع كتل المواد الناتجة أقل من كتلة المادة الأولية . لماذا ؟
$2NO_{2(g)} \xrightarrow{N_2O_{4(g)}} N_2O_{4(g)} + 58kJ$ أ- ما أثر تغير العوامل التالية على موضع الاتزان في التفاعل التالي:
۱ – زیادة ترکیز <i>NO_{2(g)} استنا</i>
۲- سحب N ₂ O _{4(g)} فور تكونه
٣- خفض الضغط الكلي للنظام
٤ - زيادة درجة الحرارة
ب– خليط من الغازات يحتوي على 0.30 مول 0.30 مول 0.10 ، 0.10 مول H_2 0 مول H_2 0 مول وكمية مجهولة
من CH_4 في كل دسم $^{m{\eta}}$. هذا الخليط في مرحلة الاتزان عند درجة حرارة 1200 كالفن
$CO_{(g)} + 3H_{2(g)} \longrightarrow CH_{4(g)} + H_2O_{(g)}$
$3.92=K_{C}$ كم يكون تركيز CH_{4} في هذا الخليط ؟ ثابت الاتزان

جـ- إذا وضعت 1.0 مول من N_2O_3 في دورق عند درجة حرارة $^\circ$ 25 م وضغط 1 جوي ، حيث تحلل وفقاً
للمعادلة الكيميائية :
$N_2O_{3(g)} = NO_{2(g)} + NO_{(g)}$
كم يكون عدد مولات كل من $N_2O_{3(g)}$ و $N_2O_{(g)}$ عند الاتزان إذا وجد أنه يحتوي على
$NO_{2(g)}$ مول من $NO_{2(g)}$ ؟
$N_2O_{3(g)}$ عدد مولات $N_2O_{3(g)}=N_2O_{3(g)}$
$=NO_{(g)}$ عدد مولات $=NO_{(g)}$
(٣) أ- ١- عندما تكون الذرات في الحالة الغازية فإن ميولها لاكتساب الإلكترونات يقاس بقيمة
بينما ميولها لفقدان الإلكترونات يقاس بقيمة
(C,B,A,B,A) المخفف في (C,B,A,A) المخفف في التوالي تحتوي على محلول
، C ومحلول نترات الفضة $AgNO_3$ في الخلية \mathbf{B} ، ومحلول $CuSO_4$ في الخلية AgNO في الخلية
مرت فيها كمية من الكهرباء فترسبت 54.0 جم من الفضة على مهبط الخلية B .
كم جراماً من الهيدروجين تتحرر عند مهبط الخلية A ؟
كم جراماً من النحاس تترسب على مهبط الخلية C إ
(الكتلة الذرية النسبية : H = 1 ، Ag = 108 ، Cu = 63)
ب- لتفاعل الأكسدة والاختزال الممثل بالمعادلة الكيميائية التالية :
$Ca + H_2SO_4(dil) \longrightarrow CaSO_4 + H_2$
اكتب معادلات نصفي التفاعل:
نصف تفاعل الأكسدة:
نصف تفاعل الاختزال :
ج- احسب عدد أكسدة كلٍ من :
۱ – النيتروجين في : NH ₄ :
۲- الهيدروجين في MgH ₂ :
۳– النيتروجين في Cu(NO ₃) ₂ : Cu(NO ₃)
ے الکربون في CH ₃ COONa: ::::::::::::::::::::::::::::::::::
د- ما هي نواتج التحليل الكهربائي لمحلول :
۱ - حمض الهيدروكلوريك HCl المركز ؟
عند المصعد: عند المهبط:عند المهبط
٢- حمض الهيدروكلوريك المخفف:
عند المصعد: عند المسط: